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Introduction 1

Dimensionality reduction (DR) is frequently applied during the analysis of 2

high-dimensional data. Both a means of denoising and simplification, it can be 3

beneficial for the majority of modern biological datasets, where it’s not uncommon to 4

have hundreds or even millions of simultaneous measurements collected for a single 5

sample. Due to the curse of dimensionality, many statistical methods lack power when 6

applied to high dimensional data. Even if the number of collected data points is large, 7

they remain sparsely submerged in a voluminous high dimensional space that is 8

practically impossible to explore exhaustively (see Chapter 12 [1]). By reducing the 9

dimensionality of the data, you can often alleviate this challenging and troublesome 10

phenomenon. Low-dimensional data representations that remove noise but retain the 11

signal of interest can be instrumental in understanding hidden structures and patterns. 12

Original high-dimensional data often contains measurements on uninformative or 13

redundant variables. DR can be viewed as a method for latent feature extraction. It is 14

also frequently used for data compression, exploration, and visualization. Although 15

many DR techniques have been developed and implemented in standard data analytic 16

pipelines, they are easy to misuse and their results are often misinterpreted in practice. 17

This article presents a set of useful guidelines for practitioners specifying how to 18

correctly perform DR, interpret its output, and communicate results. Note that this is 19

not a review article and we recommend some important reviews in the references. 20

Tip 1: Choose an appropriate method. 21

The abundance of available DR methods can seem intimidating when you want to pick 22

one out of the existing bounty for your analysis. The truth is, you don’t really need to 23

commit to only one tool; however, you must recognize which methods are appropriate 24

for your application. 25

The choice of a DR method depends on the nature of your input data. For example, 26

different methods apply to continuous, categorical, count or distance data. You should 27

also consider your intuition and domain knowledge about the collected measurements. 28

It is often the case that observations can adequately capture only the small-scale 29

relationships between nearby (or similar) data points, but not the long-range 30

interactions between distant observations. Considering the nature and the resolution of 31

your data is important, as DR methods can be focused on recovering either global or 32

local structures in the data. In general, linear methods such as principal component 33

analysis (PCA) [2, 3], correspondence analysis (CA) [4], multiple correspondence 34

analysis (MCA) [5] or classical multidimensional scaling (cMDS), also referred to as 35
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principal correspondence analysis (PCoA) [6], are more adept at preserving global 36

structure, whereas non-linear methods such as kernel PCA [7,8], non-metric 37

multidimensional scaling (NMDS) [9, 10], Isomap [11], diffusion maps [12], and varieties 38

of neighbor embedding (NE) techniques [13] such as t-Stochastic Neighbor Embedding 39

(t-SNE) [14] are better at representing local interactions. Neighbor embedding 40

approaches do not preserve long-range interactions between data points and generate 41

visualizations in which the arrangement of non-neighboring groups of observations is not 42

informative. As a consequence, inferences should not be made based on large-scale 43

structures observed in NE plots. Reviews of linear and non-linear DR methods are 44

provided in [15] and [16] respectively. 45

If observations in your data have assigned class labels and your goal is to obtain a 46

representation that best separates them into known categories, you might consider using 47

supervised dimensionality reduction techniques. Examples of supervised DR methods 48

include partial least squares (PLS) [17], linear discriminant analysis (LDA) [18], 49

neighborhood component analysis (NCA) [19], and the bottleneck neural network 50

classifier [20]. Unlike the previously listed unsupervised methods, blind to observations’ 51

group memberships, these supervised DR techniques directly use the class assignment 52

information to cluster together data points with the same labels. 53

In situations where multi-domain data is gathered, e.g. gene expression together 54

with proteomics and methylation data, you might apply DR to each data table 55

separately, and then align them using a Procrustes transformation [21] or instead, 56

consider methods that allow integration of multiple datasets such as STATIS [22,23] 57

and DISTATIS [24] (see tip 9 for more details). Table 1 gives a classification and a 58

summary of the basic properties of the DR techniques. To assist practitioners, we also 59

include, in Table 2, a list of stable implementations of methods discussed in this article. 60

Table 1. Dimensionality reduction methods. Basic properties: input data required, method class, linear or nonlinear,
and runtime complexity in terms of: n – the number of observations, p – the number of features in the original data, k – the
selected number of nearest neighbors, h – the number of iterations, and P – the total number of variables in all available
datasets collected on n samples in case of multi-domain data.

Method Input Data Method Class Nonlinear Complexity

PCA continuous data unsupervised O(max(n2p, np2))
CA categorical data unsupervised O(max(n2p, np2))
MCA categorical data unsupervised O(max(n2p, np2))
PCoA (cMDS) distance matrix unsupervised O(n2p)
NMDS distance matrix unsupervised O(n2h)
Isomap continuous∗ unsupervised X O(n2(p + log n))
Diffusion Map continuous∗ unsupervised X O(n2p)
Kernel PCA continuous∗ unsupervised X O(n2p)
t-SNE continuous/distance unsupervised X O(n2p + n2h)
Barnes-Hut t-SNE continuous/distance unsupervised X O(nh log n)
LDA continuous (X & Y) supervised O(np2 + p3)
PLS (NIPALS) continuous (X & Y) supervised O(npd)
NCA distance matrix supervised X O(n2h)
Bottleneck NN continuous/categorical supervised X O(nph)
STATIS continuous multi-domain O(n2P, nP 2)
DiSTATIS distance matrix multi-domain O(n2P, nP 2)

∗ Commonly, Isomap estimates geodesic distances between data points from Euclidean distances, and Diffusion Map and
Kernel PCA compute Gaussian Kernels, and thus require continuous data input. However, it is possible to use categorical
data if other dissimilarities or kernels are used.
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Table 2. Example implementations. Software packages and function performing specified dimensionality reduction
techniques available in R and python. R implementations are given as: package name::function name; listed python
functions come from sklearn and scipy libraries.

Method R function python function

PCA stats::prcomp sklearn.decomposition.PCA

CATPCA gifi::princals

CA FactoMineR::CA

MCA FactoMineR::MCA

PCoA (cMDS) stats::cmdscale sklearn.manifold.MDS

NMDS ecodist::nmds sklearn.manifold.MDS

Isomap vegan::isomap sklearn.manifold.Isomap

Diffusion Map diffusionMap::diffuse

(Barnes-Hut) t-SNE Rtsne::Rtsne sklearn.manifold.TSNE

LDA MASS::lda sklearn.discriminant analysis.LinearDiscriminantAnalysis

PLS (NIPALS) mixOmics::pls sklearn.cross decomposition.PLSRegression

DiSTATIS DistatisR::distatis

Procrustes vegan::procrustes scipy.spatial.procrustes

The outputs of most linear DR methods can be visualized in R with factoextra package [25], used to generate a number of
the plots in this article.

Tip 2: Pre-process continuous and count input data. 61

Before applying dimensionality reduction, suitable data pre-processing is often necessary. 62

For example, data centering – subtracting variable means from each observation – is a 63

required step for PCA on continuous variables and is applied by default in most 64

standard implementations. Another commonly employed data transformation is scaling – 65

multiplying each measurement of a variable by a scalar factor so that the resulting 66

feature has a variance of one. The scaling step ensures equal contribution from each 67

variable, which is especially important for datasets containing heterogeneous features 68

with highly variable ranges or distinct units, e.g. patient clinical data, or environmental 69

factors data. 70

When the units of all variables are the same, e.g. in high throughput assays, 71

normalizing feature variances is not advised since it results in shrinkage of features 72

containing strong signals and inflation of features with no signal. Other data 73

transformations may be required, depending on the application, the type of input data, 74

and the DR method used. For example, if changes in your data are multiplicative, e.g. 75

your variables measure percent increase/decrease, you should consider using a 76

log-transform before applying PCA. When working with genomic sequencing data, two 77

issues need to be addressed before you can apply DR. First, each sequencing sample has 78

a different library size (sequencing depth) – a nuisance parameter that artificially 79

differentiates observations. In order to make observations comparable to each other, 80

samples need to be normalized by dividing each measurement by a corresponding 81

sample size factor, estimated using specialized methods (e.g. DESeq2 [26], edgeR [27]). 82

Secondly, the assay data exhibit a mean-variance trend where features with higher 83

means have higher variances. A variance stabilization transformation (VST) is needed 84

to adjust for this effect and to avoid bias towards the highly abundant features. For 85

counts with a negative-binomial distribution, such as the sequencing read counts, an 86

inverse hyperbolic sine transformation or similar techniques are recommended [28–30]. 87

Sample normalization and variance stabilization together are effective and sufficient 88

pre-processing steps for high throughput data. 89
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Tip 3: Handle categorical input data appropriately. 90

In many cases, available measurements are not numerical but qualitative or categorical. 91

The corresponding data variables represent categories – non-numeric quantities, e.g. 92

phenotypes, cohort memberships, sample sequencing runs, survey respondent ratings. 93

When the relationship between the levels (distinct values) of two categorical variables is 94

of interest, correspondence analysis (CA) is applied to a contingency table (constructed 95

from the data), whose entries are the categories’ co-occurrence frequencies. If more than 96

two categorical variables are available, multiple correspondence analysis (MCA) enables 97

the study of both the relationship between the observations and the associations 98

between variable categories. MCA is a generalization of CA and is simply CA applied to 99

an indicator matrix formed by a dummy (one-hot) encoding of the categorical 100

variables [5]. When the input data contains both numerical and categorical variables, 101

two strategies are available. If only a few categorical variables are present, PCA is used 102

on numerical variables, and the group means for the levels of the categorical variables 103

can be projected as supplementary (unweighted) points (see chapter 9 of [1] for details). 104

On the other hand, if the mixed dataset contains a large number of categorical variables, 105

multiple factor analysis (MFA) [31] can be used. The method applies PCA on numerical 106

and MCA on categorical variables and combines the results by weighing variable groups. 107

Another approach to working with categorical or mixed data is to perform PCA on 108

variables transformed using an optimal quantification. Traditional PCA cannot be 109

applied to categorical variables, because its objective is to maximize the variance 110

accounted for, a concept that exists only for numerical variables. For nominal 111

(unordered) or ordinal (ordered) categorical variables, variance can be replaced by a 112

Chi-squared distance on category frequencies (as in CA), or an appropriate variable 113

transformation can be applied before doing a PCA. Converting categorical variables to 114

dummy binary features is one method; another approach is to use optimal scaling 115

categorical PCA (CATPCA) [32–34]. Optimal scaling replaces original levels of 116

categorical variables with category quantifications such that the variance in the new 117

variables is maximized [35]. Categorical PCA is then formulated as an optimization 118

problem, where the squared difference between the quantified data and the principal 119

components is minimized iteratively alternating between the component scores, the 120

component loadings and the variable quantification. 121

An advantage of optimal scaling is that it does not assume a linear relationship 122

between variables. In fact, the ability of CATPCA to handle nonlinear relations 123

between variables is important even when the input data are all numeric. Thus, when 124

non-linearities are present and the standard PCA explains only a low proportion of the 125

variance, optimal scaling provides a possible remedy. 126

Tip 4: Use embedding methods for reducing 127

similarity and dissimilarity input data. 128

When neither quantitative nor qualitative features are available, the relationships 129

between data points, measured as dissimilarities (or similarities), can be the basis of 130

dimensionality reduction performed as a low-dimensional embedding. Even when 131

variable measurements are available, computing dissimilarities and using distance-based 132

methods might be an effective approach. Make sure that you choose a dissimilarity 133

metric that provides the best summary of your data, e.g. if the original data is binary, 134

the Euclidean distance is not appropriate and the Manhattan distance is better. If the 135

features are sparse, however, then the Jaccard distance is preferred. 136

cMDS/PCoA and NMDS use pairwise dissimilarities between data points to find an 137

embedding in Euclidean space that provides the best approximation to the supplied 138
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distances. While cMDS is an matrix decomposition method akin to PCA, NMDS is an 139

optimization technique that strives to retain only the ordering of the dissimilarities [36]. 140

The latter approach is more applicable when you have low confidence in the values of 141

the input distances. When the dissimilarity data is only available in non-standard, 142

qualitative formats, more specialized ordinal embedding methods are available, 143

discussed in detail by Kleindessner and von Luxburg in [37,38]. When using 144

optimization based MDS, you can choose to preserve only the local interactions by 145

restricting the minimization problem to only the distances from data points to their 146

neighbors, e.g. the k-nearest neighbors. This approach can be referred to as local MDS. 147

Dissimilarities can also be used as input to t-SNE. Similarly to local MDS, t-SNE is 148

only focused on representing the short-range interactions. However, the method achieves 149

locality in a different way, by converting the supplied distances into proximity measures 150

using a small-tail Gaussian kernel. A collection of neural-network based approaches, 151

called word2vec [39], have been developed that also use similarity data (the 152

co-occurrence data) to generate vector embeddings of objects in a continuous Euclidean 153

space. These techniques have proven highly effective at generating word embeddings 154

from text corpus-derived-data, and have since been adapted for gene co-expression data 155

in gene2vec program by Du et al. [40]. The robustness of these highly-computational 156

methods has not been yet extensively tested on many biological datasets. 157

Tip 5: Consciously decide on the number of 158

dimensions to retain. 159

When performing DR, choosing a suitable number of new dimensions to compute is 160

crucial. This step determines whether the signal of interest is captured in the reduced 161

data, especially important when DR is applied as a preprocessing step preceding 162

statistical analyses or machine learning tasks (e.g. clustering). Even when your primary 163

goal is data visualization, where only two or three axes can be displayed at a time, you 164

still need to select a sufficient number new features to generate. For example, the first 165

two or three principal components might explain an insufficient fraction of the variance, 166

in which case the higher order components should be retained, and multiple 167

combinations of the components should be used for visualizations (e.g. PC1 vs PC2, 168

PC2 vs PC4, and PC3 vs PC5 etc.) In some cases, the strongest signal is a confounding 169

factor, and the variation of interest is captured by higher order PCs. If this is the case, 170

you must use higher order components to expose the desired patterns. 171

The optimal choice for the number of dimensions to keep depends largely on the 172

data itself. You cannot decide on the right dimension for the output before consulting 173

the data. Remember that the number of dimensions can be at most the minimum of the 174

number of observations (rows) and the number of variables (columns) in your dataset. 175

For example, if your dataset contains expression of 10, 000 genes but for only 10 samples, 176

there could not be more than 10 (or even 9 if the input data has been centered) axes in 177

your reduced data representation . For DR methods based on spectral decompositions, 178

such as PCA or PCoA, you could use the distribution of the eigenvalues to guide your 179

choice of dimensions. In practice, people usually rely on scree plots (example in Fig. 1) 180

and the elbow rule when making decisions. A scree plot simply shows the eigenvalues 181

corresponding to each of the axes in the output representation, or equivalently, the 182

proportion of the variance each axis (e.g. a principal component) explains. When 183

viewing the plot you should look for a cut-off point, where an eigenvalue drops 184

significantly below the level of the one immediately preceding it – the“elbow” point. 185

Alternatively, you can inspect a histogram of the eigenvalues and search for the large 186

values that “stand out” from the bulk. Formally, the Marchenko-Pastur distribution 187
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asymptotically models the distribution of the singular values of large random matrices. 188

Therefore, for datasets large in both the number of observations and features, you use a 189

rule of retaining only eigenvalues outside the support of the fitted Marchenko-Pastur 190

distribution; however, remember that this applies only when your data has at least 191

thousands of samples and thousands of features. 192

Fig 1. Scree plot. For spectral methods, the eigenvalues can be used to decide how
many dimensions are sufficient. The number of dimensions to keep can be selected
based on an “elbow rule”. In the example shown, you should keep the first five principal
components.

For non-spectral, optimization-based methods, the number of components is usually 193

pre-specified before DR computations. When using these approaches, the number of 194

components can be chosen by repeating the DR process using an increasing number of 195

dimensions and evaluating whether incorporating more components achieves a 196

significantly lower value of the loss function that the method minimizes e.g. the KL 197

divergence between transition probabilities defined for the input and the output data in 198

case of t-SNE. Ideally, you would like your findings (e.g. patterns seen in visualizations) 199

to be robust to the number of dimensions you choose. 200

Tip 6: Apply the correct aspect ratio for your 201

visualizations. 202

Visualization is an important part of the data exploration process. Therefore, it is 203

crucial that the DR plots you generate accurately reflect the output of the DR methods 204

you use. An important, but frequently overlooked attribute of a visualization, is its 205

aspect ratio. The proportional relationship between the height and the width (and also 206

the depth) of a 2D (and 3D) plot can strongly influence your perception of the data; 207

therefore, the DR plots should obey the aspect ratio consistent with the relative amount 208

of information explained by the output axes displayed. 209

In the case of PCA or PCoA, each output dimension has a corresponding eigenvalue 210

proportional to the amount of variance it explains. If the relationship between the 211

height and the width of a plot is arbitrary, an adequate picture of the data cannot be 212

attained. Two dimensional PCA plots with equal height and width are misleading but 213

frequently encountered, since popular software programs for analyzing biological data 214

often produce square (2D) or cubical (3D) graphics by default. Instead, the 215

height-to-width ratio of a PCA plot should be consistent with the ratio between the 216

corresponding eigenvalues. Since eigenvalues reflect the variance in coordinates of the 217
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associated principal components, you only need to to ensure that in the plots, one “unit” 218

in direction of one PC has the same length as one “unit” in direction of another PC. 1
219

The aspect ratio issue is illustrated with a simulated example, depicted in Fig. 2. In 220

the rectangular (a) and the square (b) plots, the aspect ratio is inconsistent with the 221

variance of the PC1 and PC2 coordinates; the result is an (incorrect) apparent grouping 222

of the data points into a top and a bottom cluster. In contrast, Fig. 2(c) with lengths of 223

the two axes set to respect the ratio between the corresponding eigenvalues, shows 224

correct clustering, consistent with the true class assignment. For more examples of how 225

the aspect ratio can affect the plot interpretation, see chapters 7 and 9 of [1]. 226

Fig 2. Aspect ratio for PCA plots. Two simulated Gaussian clusters projected on
the first and the second principal components. Incorrect aspect ratio in a rectangular
(a) and square (b) plot. Correct aspect ratio in (c, d) where the plot’s height and width
are adjusted to match the variances in PC1 and PC2 coordinates. Colors shown in (d)
indicate the true Gaussian group membership.

The ordering of the dimensions is not meaningful in many optimization-based DR 227

methods. For example, in the case of t-SNE, you can choose the number of output 228

dimensions (usually 2 or 3) before computing the new representation. Unlike the 229

principal components, the t-SNE dimensions are unordered and equally important, since 230

they have the same weight in the loss function minimized by the optimization algorithm. 231

Thus for t-SNE, the convention is to make the projection plots square or cubical. 232

1If you use ggplot2 R package for generating plots, adding + coords fixed(1) will ensure a correct
aspect ratio.
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Tip 7: Understand the meaning of the new 233

dimensions. 234

Many linear DR methods, including PCA and CA, provide a reduced representation 235

both for the observations and for the variables. Feature maps or correlation circles can 236

be used to determine which original variables are associated with each other or with the 237

newly generated output dimensions. The angles between the feature vectors or with the 238

PC axes are informative: vectors at approximately 0°(180°) with each other indicate 239

that the corresponding variables are closely, positively (negatively) related, whereas 240

vectors with a 90°angles indicate rough independence. 241

Fig. 3(a) shows a correlation circle with scaled coordinates of the variables’ 242

projection. The plot indicates that high values of PC1 indicate low values in “Flav” 243

(Flavanoids) and “Phenols” (Total phenols), and high values in “Malic Acid” and 244

“AlcAsh”(Alcalinity of ash). Additionally, “AlcAsh” (Alcalinity of ash) seem to be 245

closely negatively correlated with “NonFlav Phenols” (Non-flavanoid phenols) and 246

independent of “Alcohol” levels. 247

Fig 3. Variables’ projection. PCA on wine dataset shows how variables’
representation can be used to understand the meaning of the new dimensions.
Correlation circle (a) and PC1 contribution plot (b).

Original variables’ importance to the new dimensions can be visualized using 248

contribution bar plots. A variable’s contribution to a given new axis is computed as the 249

ratio between its squared coordinate (in this axis) and the corresponding sum over all 250

variables; the ratio is often converted to percentages. Many programs provide the 251

variables’ contributions as standard output; these contributions can be defined not only 252

for a single but multiple DR axes by summing the values corresponding to selected 253

components. Fig. 3(b) shows variables’ percent contribution to PC1; note that the 254

percent contribution does not carry information on the direction of the correlation. 255

When working with high-dimensional datasets such as high throughput assays, a 256

contribution bar plot for thousands or more variables is not practical; instead, you can 257

limit the plot showing only the top few (e.g. 20) features with highest contribution. 258

Variables and observations can be included in the same graphic – referred to as a 259

biplot. The term was coined by Kuno Ruben Gabriel [41] in 1971, but similar ideas were 260

proposed by Jolicoeur and Mosimann already in 1960 [42]. Biplots such as the one in 261

Fig. 4 allow you to explore the trends in the data samples and features simultaneously; 262

looking at both at the same time, you might discover groups of similar (close by) 263

observations that have high or low values for certain measured variables (see tip 8 for 264
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further details). 265

Fig 4. PCA Biplot. A single plot for the wine dataset combines both the samples’
and the variables’ projection to the first two principal components.

Tip 8: Find the hidden signal. 266

The primary objective of dimensionality reduction is to compress data while preserving 267

most of the meaningful information. Compression facilitates the process of 268

understanding the data, because the reduced data representation is expected to capture 269

the dominant sources of variation more efficiently. The aim is to uncover the “hidden 270

variables” that can successfully expose the underlying structure of the data. The most 271

frequently encountered latent patterns are discrete clusters or continuous gradients. 272

In the former case, similar observations bundle together away from other groups. An 273

example of a simulated clustered dataset is shown in Fig. 5(a). When performing the 274

cluster analysis, where the goal is to estimate samples’ group memberships, it is common 275

practice to first apply PCA. More specifically, practitioners often use a set of the top 276

(e.g. 50) principal components as input to a clustering algorithm. PCA-reduction is 277

intended as a noise reduction step, since the top eigenvectors are expected to contain all 278

signals of interest [43]. Regrettably, this property does not extend to all DR methods. 279

The output generated by neighborhood embedding techniques, such as t-SNE, should 280

not be used for clustering as they preserve neither distances nor densities – both 281

quantities highly important in the interpretation of clustering output. 282

Unlike discrete clusters, continuous changes in the data are less frequently identified. 283

It is important to know how to identify and accurately interpret latent gradients, as 284

they often appear in biological data associated with unknown continuous processes. 285

Gradients are present when data points do not separate into distinct tightly packed 286

clusters, but instead exhibit a gradual shift from one extreme to another; they often 287

emerge as smooth curves in DR-visualizations. It is worth noting that data points are 288

often arranged in horseshoes or arch-shaped configurations when PCA and cMDS 289

(PCoA) is applied to data involving a linear gradient. A horseshoe effect can appear in 290

PCA and cMDS plots when the associated eigenvectors take on a specific form [44] due 291

to the properties of the data covariance or distance matrices used for computations, in 292

particular when these matrices can be expressed as centrosymmetric 293

Kac-Murdock-Szego matrices [45]. 294
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Fig 5. Latent structure. Observations in PCA plots may cluster into groups (a) or
follow a continuous gradient (b).

You can see an example of this pattern for simulated data with a latent gradient in 295

Fig. 5(b). Continuous transitions are frequently encountered when measurements are 296

taken over time; for example, the cell development literature is rich with publications 297

introducing methods for analyzing pseudo-time, a gradient observed during cell 298

differentiation or development [46,47]. There can be multiple gradients affecting the 299

data, and a steady change can be recorded in different directions [48]. However, the 300

variable behind the observed continuous gradient could be unknown. In this case, you 301

should focus on finding the discrepancies between the observations at the endpoints 302

(extremes) of the gradients by inspecting the differences between their values for any 303

available external covariates [49], if collected (see tip 7). Otherwise, you might need to 304

gather additional information on the samples in your dataset to investigate the 305

explanation of these differences. 306

Additional contiguous measurements – those not used for DR computations – are 307

frequently collected on observations included in the dataset. The extra information can 308

be used to improve the understanding of the data. The simplest and most common way 309

to use the external covariates is to include them in DR visualizations – with their values 310

encoded as color, shape, size or even transparency of corresponding points on the plot. 311

An example of this is shown in Fig. 6(a): the PCA embedding for a dataset on wine 312

properties [50], where the data points are colored by wine class, a variable that the DR 313

was blind to. The observed grouping of the wines suggests that thirteen wine properties 314

used for DR can characterize the wine categories well. The “Wine Data Set” is 315

accessible from the UCI Machine Learning Repository [51]. 316

Sometimes, directly plotting the external variable against the newly computed 317

features is an effective way of exposing trends present in the data. For example, a 318

scatter plot of a continuous variable, e.g. a patient’s age or weight, versus coordinates of 319

a selected output dimension shows correlation between the selected covariate and the 320

new feature. If the external information is categorical instead of continuous, a boxplot 321

of the principal component coordinates (e.g. PC1, PC2 or others) can be generated for 322

each level of the variable. 323

External information can also be incorporated in biplots. Fig. 6(b) shows how 324

combining the external information on the observations with the interpretation of the 325

new axes in terms of the original variables (as described in tip 7) allows you to discover 326

that Barbera wines tend to have higher values of “Malic Acid” and lower “Flavanoids”, 327

and Grignolinos tend to have low “Ash” and “Alcohol” content. 328

Additionally, external information can be used to discover batch effects. Batch 329

effects are technical or systemic sources of variation that obscure the main signal of 330

interest. They are frequently encountered in sequencing data, where samples from the 331

same sequencing run (lane) cluster close together. Since batch effects can confound the 332

signal of interest, it is a good practice to check for their presence, and if found, to 333
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Fig 6. Using external information. (a) A PCA sample projection on the wine
dataset shows that based on their properties, wines tend to cluster in agreement with
the grape variety classification: Nebbiolo, Grignolino and Barbera. (b) A PCA biplot
can be used to find what groups of wines tends to have higher levels of which property.

remove them before proceeding with further downstream analysis. You can detect 334

technical or systemic variations by generating a DR embedding map with the data 335

points colored by their batch membership, e.g by the sequencing run, the cage number, 336

the study cohort. If a batch effect is discovered, you can remove it by shifting all 337

observations in such a way that each batch has its centroid (the group’s barycenter) 338

located at the center of the plot (usually the origin of the coordinate system). 339

Tip 9: Take advantage of multi-domain data. 340

Sometimes, more than one set of measurements is collected for the same set of samples; 341

for example, high-throughput genomic studies involving data from multiple domains are 342

often encountered. For the same biological sample microarray gene expression, miRNA 343

expression, proteomics, and DNA methylation data might be gathered [52]. Integrating 344

multiple datasets allows you to both obtain a more accurate representation of higher 345

order interactions, and evaluate the associated variability. Samples often exhibit varying 346

levels of uncertainty, as different regions of the data can be subject to different rates of 347

changes or fluctuations. 348

One way of dealing with multi-domain, also referred to as multi-modal, multi-way, 349

multi-view or multi-omics data is to perform DR for each dataset separately, and then 350

align them together using a Procrustes transformation – a combination of translation, 351

scaling and rotation to align one configuration with another as closely as possible 352

((see [21] and [36]). A number of more advanced methods have also been developed, for 353

instance, STATIS [22] and DISTATIS [24,53] – generalizations of PCA and classical 354

MDS respectively. Both methods are used to analyze several sets of data tables 355

collected on the same set of observations, and both are based on an idea of combining 356

datasets into a common consensus structure called the compromise [54]. 357

The datasets can all be projected onto this consensus space. The projections of 358

individual datasets can be helpful for observing different patterns in observations 359

characterized by data from different domains. Fig. 7 shows an example of the use of 360

DiSTATIS on five simulated distance tables for 20 synthetic data points. Different 361

colors correspond to different data points, and different shapes correspond to different 362

distance tables. The compromise points between the tables are denoted with larger 363
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diamond-shape-markers. For a detailed survey on the analysis of multitable data, with a 364

focus on biological multi-omics datasets, see Meng et al. [55]. 365

Fig 7. Multi-domain data. DiSTATIS on multiple distance tables defined for the
same observations. Multiple distances can be computed from different data modalities
e.g. gene expression, methylation, clinical data, or from data resampled from known
data-generating distribution.

Tip 10: Check the robustness of your results and 366

quantify uncertainties. 367

For some datasets, the PCA principal components are ill-defined, i.e. two or more 368

successive PCs may have very similar variances, and the corresponding eigenvalues are 369

almost exactly the same, as in Fig. 8. Although a subspace spanned by these 370

components together is meaningful, the eigenvectors (PCs) are not informative 371

individually, and their loadings cannot be interpreted separately, since a very slight 372

change in even one observation can lead to a completely different set of eigenvectors [1]. 373

In these cases, we say that these PCs are unstable. The dimensions corresponding to 374

similar eigenvalues need to be kept together, and not individually interpreted. 375

When working with techniques that require parameter specification, you should also 376

check the stability of your results against different parameter settings. For example, 377

when running t-SNE, you need to pick a value for perplexity, and different settings can 378

alter the results obtained even qualitatively. It has been frequently observed that when 379

the perplexity is set to a very small value, artificial clusters start forming in t-SNE 380

plots [56]. You should not use the values of the t-SNE objective function, the 381

Kullback-Divergence (KL) divergence, as a criterion to choose an “optimal perplexity” 382

because the KL divergence always decreases (monotonically) as perplexity values 383

increase. For t-SNE, a BIC-type rule for selecting perplexities was proposed by Cao and 384

Wang in [57]. However, in practice you should repeat DR computations for a range of 385

input parameters and visually evaluate whether the patterns discovered are consistent 386

across varying specifications, as stability theory for t-SNE has not yet been developed. 387

In particular, if the clustering pattern disappears with only a slight increase of the 388
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Fig 8. Unstable eigenvalues. When subsequent eigenvalues have close to equal
values, PCA representation is unstable.

perplexity value, the grouping you observed might be only an artifact due to an 389

unsuitably small choice of the parameter. 390

A separate concern is a method’s stability against outliers. In general, it is known 391

that observations far from the origin have more influence on the PCs than the ones close 392

to the center; sometimes it is possible that only a small fraction of the samples in the 393

data almost fully determines the PCs. You should be mindful of these situations and 394

verify that the structure captured by DR represents the bulk of the data and not just a 395

few outliers. In DR maps, the outliers are the remote points, distant from the majority 396

of the observations. In the case of PCA and other linear methods, if all of the points in 397

a sample projection plot are located close to the origin (the center of the plot), with 398

only one or a few points lying very far away, the DR solution is said to be dominated by 399

the outliers. You should inspect suitable data-specific quality control metrics for these 400

points and consider their removal. If samples are removed, the DR needs to be 401

recomputed and the changes in the output representation should be noted. Observe how 402

observations shift by comparing the DR visualizations before and after the removal of 403

the outliers. You should consider removing not only the technical outliers, but also the 404

“outgroups”, the aberrant groups known to be extensively different from the majority of 405

the data. Eliminating the outgroups and recomputing the DR allows for patterns in the 406

bulk of the data to emerge. On the other hand, if a dataset contains many aberrant 407

observations, stable methods such as robust Kernel PCA [58] should be used. 408

Additionally, you can estimate the uncertainties associated with observations by 409

constructing a collection of “bootstrap” datasets, i.e. random subsets of the data 410

generated by re-sampling observations with replacement. The bootstrap set can be 411

treated as multi-way data and the STATIS or Procrustes aligning method described in 412

tip 8 can be applied to “match” the random subsets together. When a realistic noise 413

model for the data is available, instead of using bootstrap subsamples, you can generate 414

copies of all data points by perturbing the measurement values for each sample and 415

then applying the STATIS or DiSTATIS methods as described in the previous tip to 416

generate the coordinates for the compromise and for each individual perturbed copy of 417

the data. Obtaining multiple coordinates estimates per data point allows you to 418

estimate the corresponding uncertainty. You can visualize each sample’s uncertainty on 419

a DR embedding map using density contours or by plotting all data points from each 420

bootstrap’s projection onto the compromise. Fig. 9 shows the Procrustes alignments of 421

PCA projections for two simulated datasets. The colored lines indicate density contours 422

for the output coordinates of the bootstrap subsets, and the diamond markers 423
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correspond to the coordinates of the projection of the full data. Plots were produced for 424

20 synthetic data points from a true 2-dimensional and 5-dimensional Gaussian, both 425

orthogonally projected to 10 dimensions. We can observed that uncertainties for points 426

in the lower rank data are much smaller, i.e. the first 2 PCs represent the first dataset 427

better than the second one. 428

Fig 9. data point uncertainties. Stability in the DR output coordinates for each
data point. Projections of bootstrap samples for two 10D simulated datasets with rank
2 (a) and rank 5 (b), onto the first two principal components aligned using a Procrustes
transformation. Smaller, circular markers correspond to each bootstrap trial, and larger,
diamond markers are coordinates of the full dataset.

Conclusion 429

Dimensionality reduction is very useful and sometimes essential when analyzing high 430

dimensional data. Despite their widespread adoption, DR methods are often misused or 431

misinterpreted. Researchers performing DR might find the sheer number of available 432

methods already intimidating, not to mention the wide variety of different dissimilarity 433

metrics or parameter settings required by some of these methods. This set of ten tips 434

serves as a checklist or informal guideline for practitioners. We described a general 435

step-by-step procedure for performing effective dimensionality reduction and gave 436

pointers for correctly interpreting and adequately communicating the output of DR 437

algorithms. Most of the recommendations discussed here apply to any DR method, but 438

some were instructions directed towards specific reduction approaches. 439

In addition to everything discussed earlier, we would like to offer one extra piece of 440

advice: keep track of all the decisions you make, including the method you select, the 441

distances or kernels you choose, and the values of parameters you use. The most 442

convenient way to save all steps of your work together with the results obtained is 443

through an R, an IPython or a Jupyter notebook; these applications allow you to 444

generate a full analysis report containing narrative text, code, and its output. 445

Recording your choices is a crucial part of reproducible research [59]; it allows others to 446

replicate the same results you obtained, and speeds up your analysis process next time 447

you work with similar data. We provide an example of a reproducible report generated 448

with R-markdown in supplementary files S1 Code and S1 Text. 449
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Supporting information 450

S1 Code. A R-markdown file containing a reproducible record of all plots included in
this article.

S1 Text. A pdf report rendered from a R-markdown file in S1 Code containing text,
figures and code.

April 17, 2019 15/19



References

1. Holmes S, Huber W. Modern Statistics for Modern Biology. Cambridge
University Press; 2019. Available from: https://www.huber.embl.de/msmb/.

2. Pearson K. On lines and planes of closest fit to systems of points in space. The
London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science.
1901;2(11):559–572. doi:10.1080/14786440109462720.

3. Hotelling H. Analysis of a Complex of Statistical Variables with Principal
Components. Journal of Educational Psychology. 1933;24:417–441.

4. Hirschfeld HO. A Connection between Correlation and Contingency.
Mathematical Proceedings of the Cambridge Philosophical Society.
1935;31(4):520–524. doi:10.1017/S0305004100013517.

5. Abdi H, Valentin D. Multiple Correspondence Analysis. Encyclopedia of
Measurement and Statistics. 2007;doi:10.4135/9781412952644.

6. Torgerson WS. Theory and methods of scaling. Oxford, England: Wiley; 1958.

7. Schölkopf B, Smola A, Müller KR. Nonlinear Component Analysis as a Kernel
Eigenvalue Problem. Neural Computation. 1998;10(5):1299–1319.
doi:10.1162/089976698300017467.

8. Schölkopf B, Smola AJ, Müller KR. Advances in Kernel Methods. Cambridge,
MA, USA: MIT Press; 1999. p. 327–352.

9. Shepard RN. The analysis of proximities: Multidimensional scaling with an
unknown distance function. II. Psychometrika. 1962;27(3):219–246.
doi:10.1007/BF02289621.

10. Kruskal JB. Nonmetric multidimensional scaling: A numerical method.
Psychometrika. 1964;29(2):115–129. doi:10.1007/BF02289694.

11. Tenenbaum JB, Silva Vd, Langford JC. A Global Geometric Framework for
Nonlinear Dimensionality Reduction. Science. 2000;290(5500):2319–2323.
doi:10.1126/science.290.5500.2319.

12. Coifman RR, Lafon S. Diffusion maps. Applied and Computational Harmonic
Analysis. 2006;21(1):5 – 30. doi:10.1016/j.acha.2006.04.006.

13. Hinton GE, Roweis ST. Stochastic Neighbor Embedding. 2003; p. 857–864.

14. van der Maaten LJP, Hinton G. Visualizing Data using t-SNE. Journal of
Machine Learning Research. 2008;9:2579–2605.

15. Cunningham JP, Ghahramani Z. Linear Dimensionality Reduction: Survey,
Insights, and Generalizations. Journal of Machine Learning Research.
2015;16:2859–2900.

16. Ting D, Jordan MI. On Nonlinear Dimensionality Reduction, Linear Smoothing
and Autoencoding. arXiv e-prints. 2018; p. arXiv:1803.02432.

17. Wold H. Estimation of Principal Components and Related Models by Iterative
Least squares. In: Multivariate Analysis. New York: Academic Press; 1966. p.
391–420.

April 17, 2019 16/19

https://www.huber.embl.de/msmb/


18. Fisher RA. The Use of Multiple Measurements in Taxonomic Problems. Annals
of Eugenics. 1936;7(2):179–188. doi:10.1111/j.1469-1809.1936.tb02137.x.

19. Goldberger J, Roweis S, Hinton G, Salakhutdinov R. Neighbourhood
Components Analysis. In: Proceedings of the 17th International Conference on
Neural Information Processing Systems. Cambridge, MA, USA: MIT Press; 2004.
p. 513–520.

20. Parviainen E. Deep Bottleneck Classifiers in Supervised Dimension Reduction. In:
Proceedings of the 20th International Conference on Artificial Neural Networks:
Part III. ICANN’10. Berlin, Heidelberg: Springer-Verlag; 2010. p. 1–10.

21. Hurley JR, Cattell RB. The procrustes program: Producing direct rotation to
test a hypothesized factor structure. Behavioral Science. 1962;7(2):258–262.
doi:10.1002/bs.3830070216.

22. Escoufier Y. L’analyse conjointe de plusieurs matrices de données. Biométrie et
temps. 1980; p. 59–76.

23. Lavit C, Escoufier Y, Sabatier R, Traissac P. The ACT (STATIS method).
Computational Statistics & Data Analysis. 1994;18(1):97 – 119.
doi:10.1016/0167-9473(94)90134-1.

24. Abdi H, O’Toole AJ, Valentin D, Edelman B. DISTATIS: The Analysis of
Multiple Distance Matrices. In: 2005 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR’05) - Workshops; 2005. p.
42–42.

25. Kassambara A, Mundt F. factoextra: Extract and Visualize the Results of
Multivariate Data Analyses; 2017. Available from:
https://CRAN.R-project.org/package=factoextra.

26. Love MI, Huber W, Anders S. Moderated estimation of fold change and
dispersion for RNA-seq data with DESeq2. Genome Biology. 2014;15(12):550.
doi:10.1186/s13059-014-0550-8.

27. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for
differential expression analysis of digital gene expression data. Bioinformatics.
2010;26(1):139–140. doi:10.1093/bioinformatics/btp616.

28. Laubscher NF. On Stabilizing the Binomial and Negative Binomial Variances.
Journal of the American Statistical Association. 1961;56(293):143–150.
doi:10.1080/01621459.1961.10482100.

29. Burbidge JB, Magee L, Robb AL. Alternative Transformations to Handle
Extreme Values of the Dependent Variable. Journal of the American Statistical
Association. 1988;83(401):123–127. doi:10.1080/01621459.1988.10478575.
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