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Abstract

T-Stochastic Neighbor Embedding (t-SNE) is an effective technique for visualizing
high-dimensional data. However, empirical evidence shows that its output is
sometimes unpredictable and often sensitive to the choice of perplexity parameter.
Varying the parameter value does not consistently lead to a shift of focus from
local to global data structure recovery as widely believed. We propose a new
embedding method, Diffusion t-SNE, which introduces a time-step parameter
that allows the recovery of the input data geometry at different scales. We also
provide mathematical explanations for why the entropy equalization procedure
used in t-SNE results in a loss of information about local variances, leading to data
distortions that produce misleading representations with uninformative relative
sizes and unidentifiable input data sampling densities and variances. Building
upon this analysis, we present a scaling scheme of the pairwise proximities that
achieves accurate representations of regional data variances. We apply our proposed
methods to both synthetic and real-word datasets and evaluate quality of the output
embeddings in terms of both the local and global structure recovery.

1 Introduction

Neighbor embedding methods generate reduced data representations, where points close in the
original input are also close in the output but where points originally distant are not necessarily
distant in the output space. This property is desirable when one is interested only in recovering
the inherent grouping of the data points and obtaining a good cluster separation [1} [13]. t-SNE
by Van der Maaten and Hinton [23]] is a very popular neighbor embedding method for visualizing
high-dimensional data. The algorithm has been successfully used on to many large real datasets and
has exposed the underlying data groupings; it performs particularly well when applied to datasets
composed of well-separated clusters. A representative example of t-SNE’s advantage over other
linear and non-linear dimensionality reduction methods is the Mixed National Institute of Standards
and Technology (MNIST) handwritten digits dataset [9]. The t-SNE embedding produces a 2D map
of 784 dimensional input images with data points clearly separated into clumps corresponding to
different digits. Following the success of t-SNE in generating representations of benchmark machine
learning image datasets [23| [7], the method is now often used on biological datasets. In particular,
t-SNE has been widely adopted by the immunology community, where the method is frequently
applied to genomics or mass cytometry data to produce visualizations of groups of cell populations
and sub-populations [[15} 22} |6].

However, one of the weaknesses of t-SNE is its inability to correctly represent local differences in
data density or variance. It has been widely recognized that cluster sizes and large-scale distances
are not interpretable in t-SNE output embeddings [24]]. While this property might be harmless
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when the input data is inherently categorical (e.g. images of digits or objects), the inability to make
comparisons between different regions of the data is a major limitation when visualizing datasets
governed by unknown latent continuous factors. Additionally, by design t-SNE stretches and shrinks
different fragments of the data at different rates. Data distortions are most striking when the sampling
density is highly variable across different regions. Since many datasets, especially biological ones,
are not characterized by a latent discrete variable but rather by an unknown continuous process, it is
important to use data visualization tools that can accurately capture both the local neighborhoods and
the long-range interactions.

In this article, we first characterize the part of the t-SNE algorithm that induces its undesirable proper-
ties. Then, we (1) propose a scaling procedure to recover the relative differences in regional variances,
and (2) develop a new algorithm, Diffusion t-SNE, for generating multiscale data visualizations. More
specifically, we show that the dissimilarity-to-similarity conversion procedure adopted by t-SNE
and other NE methods is responsible for both the data contraction and expansion at varying degrees
across different neighborhoods as well as for the loss of information of the long-range interactions.
Our proposed method merges the strengths of two methods: t-SNE and Diffusion Maps [3] to achieve
efficient data structure recovery at different scales.

2 Preliminaries

The input to the t-SNE algorithm is either original observations set in high dimensions x; € RP, ¢ =
1,..., N, or data points first projected to a more informative “mid-size” (e.g. 50-100 dimensional)
feature space using traditional dimensionality reduction methods such as the principal component
analysis (PCA) or neural-network-based feature extraction techniques such as auto-encoders. The
algorithm computes pairwise dissimilarities (often Euclidean distances) which is problematic when
measure on data in very high dimensions due to the distance concentration [5 [11]] — a phenomenon
where the distances become very narrowly distributed, making them hardly distinguishable from
each other. Applying the initial dimension reduction step can reduce noise levels and alleviate the
issue of low-resolution distances, just described. t-SNE converts the pairwise distances to inter-point
proximities — conditional probabilities of one observation being in a neighborhood of another, p;;,

>

defined by using Gaussian kernels with varying bandwidth parameters, o7;’s:
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The o?’s are specific to each observation. The values for these parameters are selected to keep the
entropy of p.; constant, determined by a user-specified perplexity parameter, 7 = exp(y). For each

i =1,..., N we have the following constraint on the corresponding entropy term, H;:
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There is no closed-form solution to the above expression, and the o;’s are usually computed through
a binary search. Conditional probabilities are then symmetrized to form joint probabilities, (P);; =
ﬁ (pjli + py| j), representing the final measure of similarity between two data points. The main
advantage of using symmetric rather than asymmetric affinities is the computationally simpler form
of the gradient (defined later in this section). The novelty of t-SNE over its precursor, SNE, is the use
of a different affinity function for the output domain instead of the same Gaussian kernel originally
used. The similarities between observations in the output configuration, {y; € R¢, d < p}, are
computed using a Student t-distribution (usually with one degree of freedom):
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The mismatched affinity functions help t-SNE alleviate the crowding problem and prevents data
points from collapsing onto each other in the output embedding [23]]. Finally, the coordinates of the
embedding ({y;}’s) are computed by minimizing the Kullback-Leibler (KL) divergence between the
Pij

input and output proximity measures, C' = K L(P[|Q) = 3_, ; pij log ( ) using gradient descent.

3 Identifying local differences in data variance and density

In this section, we show why the dissimilarity-to-similarity conversion procedure used by t-SNE and
other NE techniques suffers from an uncontrolled stretching and shrinking when the input data exhibits
non-uniform local variance or sampling density across regions. The t-SNE entropy equalization
procedure (2.2)) for selecting different kernel bandwidths for each data point was originally introduced
to accommodate unequal data density across regions. Previously, when constant bandwidths were
used, selecting a o optimal for the entire dataset was challenging. In most cases, small values were
chosen to provide a good neighborhood resolution for dense regions where the bulk of the data resides
in. A small constant o would lead to loss of information on input data in sparsely populated regions
because the Gaussian kernel values for data points in these neighborhoods would all be similarly
infinitesimal. For every ¢ in a sparse neighborhood, the corresponding proximities (normalized
kernels) p;|;’s would be roughly constant for each j. Consequently, the ith data point would appear
uniformly distant from all other samples, so its output embedding coordinates could not be accurately
determined.

Using varying o;’s alleviates the issue described above, as the resolution of the pairwise proximities
can be kept at similar levels across dense and sparse regions by adjusting the scale of the Gaussian
kernel individually for each neighborhood. Nevertheless, while entropy-equalizing bandwidths can
increase the amount of information encoded in the inter-point proximities in sparse neighborhoods,
they can also lead to undesirable distortions in the output embedding.

3.1 Effective neighborhoods

The user-specified perplexity parameter is often referred to as the effective number of neighbors.
Since the term has not been precisely determined, we propose the following definition:

Definition 3.1. For computed bandwidth parameters o;’s, and a chosen error level, 0 < € < 1, let
the set of effective neighbors of the ith data point be N; = {j: exp(—d3;/207) > ¢/N and j # i},
where the ;’s are selected to meet the constraints specified in 1l Further let d% = Zj AN, dfj Djli
be the effective distance of data point ¢ to its neighbors.

It can be shown that for A; = max;ey;, di; — minjex;, dy;, the spread of distances from i to its
effective neighbors, the following holds (see supplementary material for derivations):

Wi exp(—=A2/20%) <n < |Ni|exp(AZ/202) + O(e). (3.1)

It follows that, when distances in the neighborhood do not vary much, we have |V;| & 5. Similarly,
using the entropy formula in[2.2] we can convert the formula for pairwise proximities for all i =
1,..., N as follows:
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The above shows that the t-SNE dissimilarity-to-similarity conversion involves “centering and
scaling” of the distances using different factors for different neighborhoods of the input data. In
other words, by design the pairwise dissimilarities are calibrated differently across regions. Since
for every i, the corresponding entropy of p.|; is constrained to be equal to -, the “standardized”

distances Z (d?, d2) /202 need to follow a similar distribution. Thus, the t-SNE maps often
consists of data patcl]ues that seem uniformly dense, regardless of variation in the input data density.
The usage of varying shift, d;, and scale, o;, factors makes cross-comparisons between p.)i’s and
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Figure 1: Two clusters with different variances and the same density (top) appear the same as two clusters of
the same variance but different density (bottom) on a standard t-SNE map. Scaling conditional probabilities can
recover information on local differences in variance. Original data shown in two left-most columns, where data
points are colored by the estimated bandwidths (first column) and true cluster membership (second column);
then standard t-SNE embedding (third column) and our scaled t-SNE embedding (fourth column).

p.x s meaningless; more specifically, while differences in values of p;|; and p;/|; are informative,
comparisons between p;|; and pj|;. or pj|; and py, cannot be interpreted. It follows that density and
variance are unidentifiable in the t-SNE embeddings.

Consider the two examples in Fig. [I] In the top row, we show two Gaussian 2D clusters with
the same sampling density but different volumes. More specifically, we generated data points:

XU A (Mpurps M), and ngreen) ~ N (tgreens 2AI ), where Npuyp = 4Ngreen. In the bottom row,
the two clusters have the same volume but different sampling density: X(Z-bl”'e) ~ N (ttoe, 1), and

xgcorng) ~ N( Lhomgs VI ), where Nyjye = 4 Nomg. Note that the resulting t-SNE maps for the two cases
(third column of Fig. [T)) appear almost the same, suggesting that the size of the cluster in the output
embeddings depends only on the number of member points.

Overall, we observe that cluster sizes are uninformative in t-SNE maps. While variable bandwidth
improves the resolution of similarities between data points in sparse regions, it leads to distortions
in the output embeddings. The shrinkage and expansion of different regions of the data is a direct
result of the enforced dissimilarity-to-similarity conversion procedure. Since the inter-point affinity
computations involve shifting and scaling of the dissimilarity values at unequal rates, the information
on local differences in variance and density is lost. Intuitively, t-SNE treats the k-nearest-neighbors in
a very sparse region the same as the k-nearest neighbors in a dense region, even though the distances
between neighbors in these two regions can vary significantly. In order to account for the differences
in variance, the values of conditional probabilities must provide an adequate comparison between
pairwise affinities for points residing in different neighborhoods.

3.2 Scaled t-SNE preserves local data variance

To alleviate this loss of information, we suggest multiplying the rows of the similarity matrix
(P):ij = pjj; by factors inversely proportional to the selected bandwidth value. In other words, we
use the following formula for scaled conditional probabilities:

exp(—Pid;;) Bi

where o; = N
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Scaling p.; terms by an «; factor recovers relative differences in the sizes of the neighborhoods
considered for each data point . The resulting similarities between ¢ and its neighbors, N, are larger
if 7 is in a dense region (with a corresponding smaller bandwidth o;), and smaller if it is in a sparse
region (with larger o;). Intuitively, larger similarities should be assigned to data points with smaller
mean distance to the k-nearest neighbors. Using «; factors and 3; bandwidths is simply a smooth
alternative to using k-nearest neighbors to evaluate inter-point similarities.

Our choice of the above scaling factor is guided by the work of Berry and Harlim [2], who showed
that the graph Laplacian (L = I — P) constructed with varying bandwidths kernels scaled by the same
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Figure 2: Full MNIST dataset (70,000 dataset) embedding with standard and scaled t-SNE. The middle
plot shows the entropy-equalizing t-SNE bandwidths. Scaled t-SNE calibrates the pairwise proximities using
these bandwidths to obtain an output embedding with accurate clusters sizes. Scalable approximate t-SNE
implementation, FIt-SNE [14]], (with perplexity 100) was applied to the top 50 principal components of the input
image data (784 pixels). Late exaggeration was used to better separate the clusters as advised in [[13].

bandwidths converge to the Laplace-Beltrami (LB) operator that links the local and global geometry
[12]. The described scaling procedure allows the differences in local densities and variances in the
input data to be reflected in computed inter-point similarities. As a result, t-SNE embeddings can be
generated with the relative cluster sizes consistent with the original cluster volumes.

The last column of Fig. [T|shows that our scaling procedure results in output embeddings in which
cluster sizes are consistent with the underlying truth. Unlike with the standard t-SNE, the local
differences in variances and data sampling densities are distinguishable in the scaled t-SNE. We also
demonstrate the effectiveness of this procedure on the MNIST dataset. This dataset is well balanced,
containing roughly the same number of samples for each digit category, and t-SNE embedding nicely
cluster the digits in the set. However, data variance across digit classes is not uniform, suggesting the
local data sampling density varies across the input data space. Consequently, the cluster sizes are
uninformative on the standard t-SNE map (middle plot in Fig. [2). For example, while most people
write the number one in a similar way, i.e. the images of “1” should be the least variable of all digits,
the digit “1” (orange) cluster appears the largest on the standard t-SNE output. On the other hand,
when «; factors are applied to corresponding conditional probabilities we see that the size of cluster
‘1’ becomes the smallest (right-most plot in Fig. [2)), as expected.

4 Recovering multiscale structures

While t-SNE maps preserve local neighborhoods, grouping similar observations close together, they
usually provide a poor representation of the large-scale structures in the input data. Since the t-SNE’s
dissimilarity-to-similarity conversion procedure involves applying a Gaussian kernel to the pairwise
distances (2.I)) measured on the input data, the algorithm implicitly assumes that these distances
cannot accurately capture the long-range interactions between observations. The Gaussian kernel
decays exponentially and converts all large distances between non-neighboring points into negligible
inter-point proximities. Consequently, the relationship between distant data points is not encoded in
the computed similarities. Since the KL divergence minimization problem for finding the optimal
output embedding configurations has access only to the pairwise proximities, there is not enough of
information available to recover the global landscape of the input data.

Learning global geometry is most challenging when the data lies approximately on a manifold that is
non-Euclidean in large scales. In these cases, the geometry of the input data cannot be recovered by
simply applying linear projections or rigid motions (such as PCA) because these data transformations
are unable to recover any curvature present in the data [[19]. When non-linear structures are present,
one must “unfold” the underlying manifold and learn its global geometry either by estimating the
“true” intrinsic distances defined on the manifold or by integrating or propagating the local information.
This means that expanding the size of considered neighborhoods by increasing the perplexity value,
would not help t-SNE obtain an accurate depiction of the latent manifold.



4.1 Diffusion t-SNE Algorithm

First, we note that the t-SNE dissimilarity-to-similarity transformation (2.I)) for the input data is
conceptually very similar to the one used in diffusion maps (DM) [3]]. DM defines a random walk on
a dataset using a (heat/Gaussian) kernel specifying the local geometry. The corresponding transition
probability matrix characterizes the directions of fast and slow propagation and approximates the
relationships between pairs of points in terms of their connectivity. Running the Markov chain
forward is equivalent to propagating and integrating the local information to obtain a global profile of

the entire dataset [3]]. DM finds a configuration in a low-dimensional space that preserves diffusion

distances defined as, Dy(z,2')* £ |[pe(z,-) — pe(@’, )72 gyujm = Spq (0o, 0) = po(a’, u))Qcif((J‘)),

where p;(x,y) is a transition probability from point x to point y in ¢ time steps (¢ € N), p is the
distribution of the data points on M, and 7 is the stationary distribution on the associated Markov
chain. The diffusion distance, D;(x,2’) integrates the local geometry over all paths of length ¢
traversed by a Markov chain on the data manifold. For discrete data points, transition probabilities are
constructed by row-normalizing Gaussian kernels, (Pyans)ij = pe—1(Xi, X;) = exp(—||x; —x;||*/h).
Note that this procedure is similar to the dissimilarity-to-similarity transformation implemented in
t-SNE to obtain p;|;’s (with the difference that DM uses constant bandwidths).

The main difference between the two methods is that t-SNE finds embedding coordinates by solving
a non-convex minimization problem, while DM computes scaled top K eigenvectors of PP, ..
Euclidean distances between pairs of points in the DM embedding approximate diffusion distances.
Note that the number of output dimensions necessary for a good approximation of the diffusion
distance depends closely on the rate of decay of the eigenvalues. Thus, while DM usually performs
well as a general-purpose technique for dimensionality reduction it may not be well suited for data

visualization, where only two or three dimensional embedding maps are required.

In Diffusion t-SNE, we propose to use PL, . as input to the KL minimization problem to find an
optimal 2D or 3D embedding. The t-SNE KL minimization problem is better suited for visualization
purposes, because its objective is to find an optimal representation in the user designated plotting
space (most often R? or R?) not restricted by an orthogonally constraint imposed on the axes like
in DM’s eigendecomposition. Moreover the embedding method’s adoption of a heavy-tail Student
t-distribution, rather than the Gaussian distribution, for computing proximities in the output space
helps countering the crowding problem, which is critical when plotting large datasets. All steps of the
procedure are listed in Alg[7]provided below. Just like in the standard t-SNE, step (1) of the algorithm
can be performed exactly, or by using approximation methods such as vantage-point tree or ANNO

Step (7) is the same as in standard t-SNE. A O(N)-runtime interpolation-based approximation for
step (7) was developed by Linderman et al. [14]]. We incorporate FIt-SNE in our Diffusion t-SNE
implementation to perform step (7) computations. Additional details on the algorithm, including the
row-sum threshold pruning procedure of [20] in step (4) are provided in the supplementary material.

Diffusion t-SNE allows the user to generate different views of the data by computing multiple
embeddings with different choices of t. However, the value of ¢ should not be chosen too large
e.g. t > 100. Conceptually, this is because as ¢ — oo the random walk on the data will approach
stationarity, and P!, can become rank one. As expected, taking too large values of ¢ might result in
merged clusters or mixing of data points in a way that information on the local inter-point proximities

is lost and all signal is diffused.

S Experiments

The examples discussed in this section are intended to illustrate and compare the behavior of the
standard t-SNE and our proposed diffusion t-SNE algorithm. Supplementary material includes
comparison to additional methods. Our results for the standard t-SNE were generated using FIt-SNE
implementation. Diffusion t-SNE program and the code to generate all results presented here are
available in the supplementary materia%

2«Approximate Nearest Neighbors Oh Yeah” method by Bernhardsson: https://github.com/spotify/annoy
3Code will be available online later



Algorithm 1: Diffusion t-SNE
input : Inputdatax; € R?,5 =1,..., N, perplexity  and time step ¢.
output : Output embedding coordinates y; € R%.
1 Compute d(x;,x;) for neighboring pairs (i, 5));
2 For all 4, find o7 and p.); with H; = log(n): (Puans)ij = Djlis
3 Compute PL, . ;
4 (Optional) Prune rows of P!,  using Alg. S2;
5 (Optional) Scale P}, using o;’s, P}, < Pt A, where A = diag(ay);
6 Symmetrize transition probabilities, Pl = (Pl 4+ (Plys)”)/2N:

7 Find {y;}’s by minimizing K L(P;,,|Q) using gradient descent;
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Figure 3: Swiss roll (a) embedding. Comparing effect of varying perplexity value in standard t-SNE (b) and
varying time step parameter in Diffusion t-SNE (c). Mean, p, and standard deviation, s,, of the Spearman rank
correlation between distances measured on the true latent coordinates and embedding configuration are reported
below the plots.

5.1 Swiss roll

A Swiss roll dataset was generated by sampling 3000 points on a flat rectangle uniformly at random
and mapping them into a 3D configuration (Fig. [3[@)). Manifold learning techniques are often tested
on their ability to unfold a Swiss roll. While this dataset is a synthetic example, it helps develop
intuition about the behavior of t-SNE and highlights the underlying issues related to embedding of
non-Euclidean (curved) datasets. Fig. [3](b) shows the standard t-SNE output embeddings of a Swiss
roll using different perplexity settings. For small values of 1, t-SNE outputs many disconnected,
unordered clusters of small groups of neighbors. For large perplexity values, t-SNE begins to
recognize larger pieces of the manifold, but still is unable to unfold the Swiss roll and returns
disconnected parts of the latent sheet. Essentially, for all selected values of perplexity, t-SNE fails to
unfold the flat surface curved in 3D.

This simple example challenges the popular belief that increasing perplexity values improves the
global structure recovery [8]]. In practice, raising perplexity simply increases the size of the average
bandwidth used by t-SNE to compute the conditional probabilities. Using larger bandwidths is
equivalent to expanding the areas considered the local neighborhoods. Implicitly, this means that
we place more trust in larger distances measured on the input data. Unfortunately, this assumption
is usually unreliable for high-dimensional data: as mentioned in Section 2] dissimilarities tend to
concentrate, with moderate and large distances having “low-resolution.” As a result, increasing
perplexity should not be expected to improve the recovery of the large-scale structures of non-linear
manifolds with high curvature.

Diffusion t-SNE utilizes powers of the transition matrix and is able to reveal the structure of the Swiss
roll scales. Below the embedding plots in Fig. 3] we also report the mean and standard deviation



(over 5 embedding runs) of the average (over data points) Spearman rank correlation between the
true distances observed in the natural parametrization space and the ones measured in the output

embedding, p, = % 271\;1 COTSpear. (dZX , dZY) Keeping a small perplexity value (resulting in small
bandwidths) and increasing the value of the time step parameter allows the methods to successfully
unfold the curved manifold. The unscaled diffusion t-SNE maps show an adequate representation
of the large-scale structure; however, the method still shrinks the blue end of the Swiss roll. This
behavior is related to the phenomenon discussed in Section [3} since the outer side of a Swiss roll
appears to be sparser in R3, the estimated t-SNE bandwidths are larger resulting, in contraction
of the region in the output embedding. In the supplementary Fig. [S4 we show that using scaled
diffusion t-SNE recovers the latent rectangular sheet, where both ends are of equal size. Using a
ranked-based metric, Qv x (K), developed by Lee and Verleysen [10], we also evaluate the quality
of the embeddings in terms of their ability to preserve local neighborhoods, Coranking curves are
reported in supplementary Fig. [ST| where we see that when limited to very small neighborhoods
(K < 10), the standard t-SNE performs better than the diffusion t-SNE, but the quality scores
converge and become roughly similar (Q nx (K) € [0.75,0.85]) for all SNE methods and K < 40.

5.2 Embryoid Body differentiation

We also test our method on a single cell expression dataset from a 27-day time course study of
the embryoid body (EB) differentiation generated by Moon et al. [[18]. The dataset || contains
scRNA-seq samples from human embryonic stem cells (hESCs) differentiating as embryoid bodies
(EB), collected in 3-day intervals. We use the same data pre-processing steps as the ones performed
by the authors of the original paper. E] We then compute the first 50 principal components on the
processed single cell data and apply the standard and diffusion t-SNE to generate 2D embeddings.

Since the dataset is governed by a differentiation process, the latent structure should involve gradual,
continuous changes rather than distinct clusters, as in cases of categorical image classes. It is thus
important to recover accurate structures present in the input data at different scales, i.e. it is of
value to both show the relationship between cells collected on the same days (small-scale) and to
depict how cells are organized across differentiation stages (large-scale). In Fig. ] diffusion t-SNE
generates data visualizations consistently at varying-scale by controlling the time step parameter, ¢,
whereas the standard t-SNE produces embeddings with disconnected patches even at a perplexity
value of n = 1000. Fig. 4| (f) shows that even using a large perplexity value cannot connect stem
cells (red points). Diffusion t-SNE consistently shows all cells at day 0 — 3 closer together. Cells at
later stages are then spread out across the embedding space. The embedding configuration becomes
more connected as the value of ¢ increases, implying a shift of focus from local to global. In
the supplementary material, we include the embeddings generated with other methods including
PHATE?|[18] — the method developed by the owners of the data — and the increasing popular UMAH’|
[L6L [17]], to show that diffusion t-SNE produces better multi-scale views of the data. Additionally,
in the supplementary material we show the effectiveness of diffusion t-SNE on another scRNA-seq
dataset from a study by Farrell at al. [4], describing the developmental trajectories during zebrafish
embryogenesis (not discussed here due to space limitations).

6 Discussion and conclusion

In this paper, we study the properties of t-SNE, focusing on the limitations due to the method’s
dissimilarity-to-similarity transformation procedure. We note that similar methods of converting
distances to proximities are exploited by many embedding techniques, including LargeVis [21]] or
UMAP. In particular, the entropy-equalization for choosing Gaussian kernel bandwidth is widely
implemented. As derived in this article, the t-SNE’s conditional probabilities can be expressed as
inverse exponential on shifted and scaled pairwise distances, where the shifting and scaling are applied
using different factors for each data point. This results in distortions in the output embedding with
the most noticeable effects occurring when the input data is unevenly sampled across the observed
space. In general, variance and density are unidentifiable on the t-SNE maps, and the cluster sizes

*EB data downloaded from: https://data.mendeley.com/datasets/v6n743h5ng/1
SEB data pre-processing steps: https://github.com/KrishnaswamyLab/PHATE
SPotential of Heat-diffusion for Affinity-based Transition Embedding
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Figure 4: Embryoid Body dataset visualization with PCA (a), standard t-SNE (a-f) and diffusion
t-SNE (g-k) for different choices parameters.

and the distances between cluster centers that cannot be interpreted from the output embedding. We
introduce two effective modifications to t-SNE that help alleviate these undesired characteristics: (1)
a scaling scheme that makes the inter-point proximities retain information on the regional fluctuations
in variance and (2) a Diffusion t-SNE algorithm that, by varying a time step parameter, can recover
the data geometry at different scales, including the global structure.
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Supplementary Material

Appendix A

Here we show the relationship between the perplexity parameter, 7, and the effective number of
neighbors. First, we expand the formula for entropy of p.;:

d2.
H; =log Zexp(_dzzj/2o'i2) + Z #pﬂi
i gL T

= log Zexp(—dfj/QaiZ) +log (exp (d; /o}))
i

=log | Y exp(—(d}; — d2)/207)
i

=log | Y exp(—(d}; —d?)/207) + Y exp(—(d}; — d?)/207)
JEN; JEN;

where d? = Do it d?jpj‘i.
Since H; = log(n) foralli=1,...,N:

n= Y exp(—(d}; —d?)/207)+ Y exp(—(d}; — d?)/207)
JEN; JEN;
A B

Then, we have:

|M| eXP((dz - d?,max)/QUiQ) < A < |M| exp((d;z - d?,min)/Qaz‘Q)
0 <B < e((N = |N;|)/N)exp(d?/207)
where dimin = minjen; dfj and df)max = max;en; dfj, the minimum and maximum distance of ¢

to its effective neighbors. Note that (d;2 — dimin) /20% < 1, since d? are highly skewed towards small
squared distances d3;s. Therefore, the term exp((d? — d7 ,1,)/207) = 1. Let A; = d7 .. — d7

. . . K v 7, max 3,min
be the spread of distances in the neighborhood of ¢. Then we have:

Wilexp(—=AF/207) <n < |Nilexp(A7/207) + O(e)

when distances to nearby neighbors are similar, A? < 1 is small, we have 7 ~ |N;].
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Appendix B
Algorithm details

We observe that one might potentially run into scalability issues when computing P}, in step
(3). Despite being technically O(N?) in runtime, today dense-dense matrix multiplication is highly
parallelized and very fast in practice. While this is true for medium-size matrices (N < 10, 000),
working with larger matrices on might run into limitations both in time and space. Thus, when
computing diffusion t-SNE for big datasets one needs scalable approaches for estimating the entries
of P!, . We suggest two approximation methods:

(A) arandom walk Monte Carlo approximation,

(B) alandmark approach like the one used by Moon et al. [18].

In the Monte Carlo method (A), Nyaxs random walks of length ¢ are generated starting from each data
point, and the resulting frequency of endpoints used for quantifying ¢-step transition probabilities.
Usually Ny, is set to be 1/¢, where € is the desire level of precision. Steps of random walks can be
drawn using alias sampling which requires O(N') of runtime to set-up an alias table from the original
Prans., (t = 1), and O(1) for each draw of a random walk. Overall, the approximation procedure has
O(Nt/e) order runtime, but is massively parallelizable, as each random walk chain can be sampled
independently. Thus, the random walk approximation can be very fast if implemented on a GPU.

In the landmark method (B), P}, is computed as transition probability matrix for a random walk of
length ¢ constrained to pass through a landmark every other step, i.e.

Pl ~ Pnyi(PunPaar) - .. (PyunPaa)Pun = PNMPJ\%;PMN

where Pyrys = Puyrnv Py denotes a transition matrix between landmark points or landmark par-
titions. Since M < N, P},,, is fast to compute. Method (B) requires O(NM? + log(t)M?) for
computing Pt . using the landmark approximation formula above. To select the landmarks one
might consider partitioning the dataset into M clusters using k-means on top K eigenvectors of Pf, .
computed using a randomized SVD algorithm. The (7, m)-th entry of Py s is then the probability
of a data point ¢ transitioning to the m-th landmark partition. Equivalently, the (m, )-th entry of
Py denotes the probability of transitioning from the m-th landmark to a data point 7. Both can be

computed by aggregating the original transition matrix Py,,s over the M -partitions.

Both methods require O(Nk) of storage space, where k is the average number of non-zeros in PL,. .
Note that for small ¢, the matrix P}, ,, might remain sparse, however it will fill up quickly, and
pruning method like the one described in the next subsection might be required for scalability.
Sparse approximation of P.,

Below we provide the algorithm for sparsifying a stochastic matrix (with row-sums equal 1) adapted
from the procedure by Reichel et al. [20]. The algorithm takes O(N?log(NN)) runtime, and
O(Nklog(k)) if the the matrix is initially already relatively sparse, with & equal the average number
of non-zero terms in a row.
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Algorithm S 2: Pruning transition matrices

input : A stochastic matrix, P, and a row-sum threshold, w.
output : Sparse approximation of P.
for i <+ 1ton do

sort the row entries in a decreasing order (saving their corresponding column indices):
Py, > Pijy 2 -+ > By, ;
find the minimal index with a cumulative sum of ordered row-entries at least w:
r <« argming{> ,_, Pi, > w};
keep at least the two biggest values per row: r < max(2,r);
keep all values of equal rank: while P;; = P;;  dor < r +1;
set Py;, < Oforall k& > r;
rescale the row to sum to one: P;; = P;;/ Zk P
end
Appendix C

Swiss roll dataset
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Figure S1: Co-ranking, Qn x (K), curves for varying choices of K -nearrest neighbors (x-axis), measuring
embeddings’ quality for recovering local neighborhoods. Left plot is a zoomed-in subset of the right plot.
Ground truth natural parametrization (latent rectangle) was used for computing Q n x (K).
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Figure S2: Swiss roll with other methods.

S3



perpl0, tstepl

perpl0, tstep5

perpll, tstepll

perpll, tstep20

perpl0, tstepS0

25

501 (q _ @{[ ‘%iq? 251
ﬁ- 3 < ] ’ Yt
V@ - e |
f p ¥
50 0 50 35 0 25 5 0 %5 5 0 5
perp20, tstepl perp20), tstepll perp20), tstep20 perp20, tstepS0
j 251
. T
% A 2 i
4 p i
—50 1 L Los -+10
50 0 a0 5 0 2 3 0 % 0 20
perp25, tstepl perp25, tstepll perp25, tstep20 perp25, tstepS0
501 ] L 201 10
] RO b
Ty o 1 e
o| il % o W o o
N— 101
=501 ; ; ; ‘ ‘ ; ‘ ‘ ; ; ; .
=50 —25 0 25 —25 0 25 —20 0 20 —10 0 10
perp30, tstep5 perp30, tstepll perp30, tstep20 perp30, tstepS0
251 j ]
501 : 25 20 104
0 < .@ﬂ %
01 i}’ 01 iﬂﬁn 04 A w%ﬂ I [k
501 1] y 1251 J107
500 0 50 25 0 %5 95 0 %m0 20 10 0 10
perp50, tstepl perp50, tstep5 perp50, tstepll perp50, tstep20 perp50, tstepS0
251 101 .;’ 5]
] -.: iy
0 0 ry 04 @, 04 3
=25 1 110 —5 %
. . —ap . . . . . .
=25 0 25 0 20 —10 0 10 0 10

Figure S3: Diffusion t-SNE with different perplexity and time step values.

Single cell datasets
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Table S1: Mean and standard deviation (across 5 runs) for the average (over all data points) Spearman rank
correlation coefficient between the distances measured in the output 2D embedding and the distances measured
on the true natural parameters of the Swiss roll. Default parameters were used for UMAP" and PHATE"

embeddings.

Swiss Roll
PCA 0.412
Isomap 0.999
PHATE 0.759
UMAP 0.879 (0.0161)
t-SNE
n =10 0.573 (0.0794)
n =20 0.739 (0.0189)
n =25 0.747 (0.0095)
n =50 0.786 (0.1222)
n =100 0.868 (0.0036)
n = 250 0.498 (0.0121)
n = 300 0.459 (0.0152)
= 500 0.403 (0.0134)
Diffusion t-SNE, n = 25
t=>5 0.901 (0.0288)
t=10 0.989 (0.0015)
t=20 0.989 (0.0013)
t =50 0.989 (0.0013)
t =100 0.987 (0.0002)
Diffusion t-SNE, n = 50
t=>5 0.992 (0.0023)
t=10 0.989 (0.0013)
t=20 0.991 (0.0018)
t =50 0.987 (0.0008)
t =100 0.979 (0.0001)
Scaled diffusion t-SNE, n = 25
t=5 0.836(0.0102)
t=10 0.969(0.0084)
t =20 0.991(0.0015)
t =50 0.991(0.0007)
t =100 0.988(0.0008)
Scaled diffusion t-SNE, n = 50
t=>5 0.989 (0.0030)
t=10 0.994 (0.0023)
t =20 0.994 (0.0016)
t =50 0.989 (0.0005)
t =100 0.979 (0.0002)

* implementation used: https://github. com/lmcinnes/umap

** implementation used: https://github.com/KrishnaswamyLab/PHATE
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Figure S5: Single cell expression dataset from a study of the mouse visual cortex by Hrvatin et al. [6]. We see
that the microglia cluster containing many data points is artificially expanded in the standard embedding (small
bandwidths lead to smaller the proximities for the same distance). Scaled t-SNE allows varying density across
the output space, and shows cluster with sizes reflecting the local differences in variance present in the input
data. Both algorithms where used the first 50 PCs as input data and 100 as perplexity value.
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Figure S6: Embryoid Body dataset from [18]. Additional embedding provided using PHATE, UMAP,
and scaled diffusion t-SNE.
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Figure S7: Single cell RNA-seq dataset collected by Farrell et al. [4] to study the zebrafish embryogenesis.
Standard t-SNE embedding colored by estimated bandwidths (a) and cell stage (b). Diffusion t-SNE (¢ = 10),
both unscaled (c) and scaled (f) is better at recovering the embryonic developmental trajectories showing a more
consistent progression through different stages unlike the standard t-SNE which outputs disconnected patches.
Scaling conditional probabilities achieves a better embedding resolution for sparser regions (d-f). Highly variable
regions occupy more space and are not clustered together. Large perplexity (n = 1000) was set for all plots, as
the dataset is large (> 38, 000 cells) and highly disconnected.

S8



	Introduction
	Preliminaries
	Identifying local differences in data variance and density
	Effective neighborhoods
	Scaled t-SNE preserves local data variance

	Recovering multiscale structures
	Diffusion t-SNE Algorithm

	Experiments
	Swiss roll
	Embryoid Body differentiation

	Discussion and conclusion

